6.867 Machine Learning

Class Info

Principles, techniques, and algorithms in machine learning from the point of view of statistical inference; representation, generalization, and model selection; and methods such as linear/additive models, active learning, boosting, support vector machines, non-parametric Bayesian methods, hidden Markov models, and Bayesian networks. Recommended prerequisite: 6.036.

This class has 6.041B, 18.600, and 18.06 as prerequisites.

6.867 will not be offered this semester. It will be instructed by D. Shah.

This class counts for a total of 12 credits. This is a graduate-level class.

You can find more information at the http://www.google.com/search?&q=MIT+%2B+6.867&btnG=Google+Search&inurl=https site.

MIT 6.867 Machine Learning Related Textbooks

© Copyright 2015