18.416J Randomized Algorithms

Class Info

Studies how randomization can be used to make algorithms simpler and more efficient via random sampling, random selection of witnesses, symmetry breaking, and Markov chains. Models of randomized computation. Data structures: hash tables, and skip lists. Graph algorithms: minimum spanning trees, shortest paths, and minimum cuts. Geometric algorithms: convex hulls, linear programming in fixed or arbitrary dimension. Approximate counting; parallel algorithms; online algorithms; derandomization techniques; and tools for probabilistic analysis of algorithms.

This class has 6.854J, 6.041, and 6.042J as prerequisites.

18.416J will not be offered this semester. It will be available in the Spring semester, and will be instructed by D. R. Karger.

This class counts for a total of 12 credits. This is a graduate-level class.

You can find more information at the 6.856J/18.416J Randomized Algorithms site.

MIT 18.416J Randomized Algorithms Related Textbooks
MIT 18.416J Randomized Algorithms On The Web
6.856J/18.416J Randomized Algorithms
lecture edu link algorithms randomized Chebyshev Noble Markov Advanced Algorithms

© Copyright 2015