16.940 Numerical Methods for Stochastic Modeling and Inference


Class Info

Advanced introduction to numerical methods for treating uncertainty in computational simulation. Draws examples from a range of engineering and science applications, emphasizing systems governed by ordinary and partial differential equations. Uncertainty propagation and assessment: Monte Carlo methods, variance reduction, sensitivity analysis, adjoint methods, polynomial chaos and Karhunen-Loève expansions, and stochastic Galerkin and collocation methods. Interaction of models with observational data, from the perspective of statistical inference: Bayesian parameter estimation, statistical regularization, Markov chain Monte Carlo, sequential data assimilation and filtering, and model selection.

This class has 16.920, and 6.431 as prerequisites.

16.940 will be offered this semester (Fall 2017). It is instructed by Y. M. Marzouk.

This class counts for a total of 12 credits. This is a graduate-level class.

You can find more information at the UQGroup site.

MIT 16.940 Numerical Methods for Stochastic Modeling and Inference Related Textbooks
MIT 16.940 Numerical Methods for Stochastic Modeling and Inference On The Web
UQGroup
Tags
computational airfoil congratulations methods school of mathematical sciences galerkin monte carlo alex gorodetsky

© Copyright 2015