12.006 Nonlinear Dynamics: Chaos


Class Info

Introduction to nonlinear dynamics and chaos in dissipative systems. Forced and parametric oscillators. Phase space. Periodic, quasiperiodic, and aperiodic flows. Sensitivity to initial conditions and strange attractors. Lorenz attractor. Period doubling, intermittency, and quasiperiodicity. Scaling and universality. Analysis of experimental data: Fourier transforms, Poincare sections, fractal dimension, and Lyapunov exponents. Applications to mechanical systems, fluid dynamics, physics, geophysics, and chemistry. See 12.207J/18.354J for Nonlinear Dynamics: Continuum Systems.

This class has 18.03, 18.032, and 8.02 as prerequisites.

12.006 will be offered this semester (Fall 2017). It is instructed by P-T. Brun.

Lecture occurs 11:00 AM to 12:30 PM on Tuesdays and Thursdays in 4-257.

This class counts for a total of 12 credits.

You can find more information at the MIT + 12.006 - Google Search site.

MIT 12.006 Nonlinear Dynamics: Chaos Related Textbooks
MIT 12.006 Nonlinear Dynamics: Chaos On The Web

© Copyright 2015