10.557 Mixed-integer and Nonconvex Optimization


Class Info

Presents the theory and practice of deterministic algorithms for locating the global solution of NP-hard optimization problems. Recurring themes and methods are convex relaxations, branch-and-bound, cutting planes, outer approximation and primal-relaxed dual approaches. Emphasis is placed on the connections between methods. These methods will be applied and illustrated in the development of algorithms for mixed-integer linear programs, mixed-integer convex programs, nonconvex programs, mixed-integer nonconvex programs, and programs with ordinary differential equations embedded. The broad range of engineering applications for these optimization formulations will also be emphasized. Students will be assessed on homework and a term project for which examples from own research are encouraged.

This class has 10.34, and 15.053 as prerequisites.

10.557 will not be offered this semester. It will be available in the Spring semester, and will be instructed by .

This class counts for a total of 12 credits. This is a graduate-level class.

You can find more information at the Optimization at MIT: 10.557 site.

MIT 10.557 Mixed-integer and Nonconvex Optimization Related Textbooks
MIT 10.557 Mixed-integer and Nonconvex Optimization On The Web

© Copyright 2015