1.00 Engineering Computation and Data Science


Class Info

Presents engineering problems in a computational setting with emphasis on data science and problem abstraction. Introduces modern development tools, patterns, and libraries for distributed-asynchronous computing, including distributed hash tables, Merkle trees, PKI encryption and zero knowledge proofs. Covers data cleaning and filtering, linear regression, and basic machine learning algorithms, such as clustering, classifiers, decision trees. Sharpens problem-solving skills in an active learning lab setting. In-class exercises and weekly assignments lead to a group project. Students taking graduate version complete additional assignments and project work.

This class has 18.01 as a prerequisite.

1.00 will not be offered this semester. It will be available in the Spring semester, and will be instructed by J. Williams.

Lecture occurs 9:30 AM to 11:00 AM on Mondays and Wednesdays in 1-390.

This class counts for a total of 12 credits.

You can find more information on MIT OpenCourseWare at the Introduction to Computers and Engineering Problem Solving site or on the 1.00 Stellar site.

MIT 1.00 Engineering Computation and Data Science Related Textbooks
MIT 1.00 Engineering Computation and Data Science On The Web
Introduction to Computers and Engineering Problem Solving
Tags
engineering

© Copyright 2015